Voting Rules for Infinite Sets and Boolean Algebras
نویسنده
چکیده
A voting rule in a Boolean algebra B is an upward closed subset that contains, for each element x ∈ B, exactly one of x and ¬x. We study several aspects of voting rules, with special attention to their relationship with ultrafilters. In particular, we study the set-theoretic hypothesis that all voting rules in the Boolean algebra of subsets of the natural numbers modulo finite sets are nearly ultrafilters. We define the notion of support of a voting rule and use it to describe voting rules that are, in a sense, as different as possible from ultrafilters. Finally, we consider how much of the axiom of choice is needed to guarantee the existence of voting rules.
منابع مشابه
Imaginaries in Boolean algebras
Given an infinite Boolean algebra B, we find a natural class of ∅-definable equivalence relations EB such that every imaginary element from B is interdefinable with an element from a sort determined by some equivalence relation from EB . It follows that B together with the family of sorts determined by EB admits elimination of imaginaries in a suitable multisorted language. The paper generalize...
متن کاملSemi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملFilter theory in MTL-algebras based on Uni-soft property
The notion of (Boolean) uni-soft filters in MTL-algebras is introduced, and several properties of them are investigated. Characterizations of (Boolean) uni-soft filters are discussed, and some (necessary and sufficient) conditions for a uni-soft filter to be Boolean are provided. The condensational property for a Boolean uni-soft filter is established.
متن کاملBOOLEAN SUBTRACTΓVΈ ALGEBRAS THOMAS M . HEARNE and
and prove that the study of such structures is equivalent to the study of generalized Boolean algebras. We call such structures Boolean subtractive algebras since they are subtractive algebras in the sense of Crapo and Rota ([1], 3.7). Alternatively, such structures might be called generalized colonies since, as we later prove, every colony is a Boolean subtractive algebra. As an example of a B...
متن کاملForcing Minimal Extensions of Boolean Algebras
We employ a forcing approach to extending Boolean algebras. A link between some forcings and some cardinal functions on Boolean algebras is found and exploited. We find the following applications: 1) We make Fedorchuk’s method more flexible, obtaining, for every cardinal λ of uncountable cofinality, a consistent example of a Boolean algebra Aλ whose every infinite homomorphic image is of cardin...
متن کامل